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Abstract. Supersymmetric quantum mechanics is well known to provide, together with the 
spcalled shape-invariance condition. an elegant method of solving the eigenvalue problem of 
some one-dimensional potentials by simple algebraic manipulations. In the present paper, this 
method is wed in stahtical physics. We consider the local critical behaviour of inhomogeneous 
Ising models and determine the complete set of anomalous dimensions f" the s p e c "  of 
the corresponding transfer matrix in the strip geometry. For smoothly varying perturbations, 
the eigenvalue problem of the trausfer manix takes the fonn of a Schriidinger equation, 
and. furthermore. the componding potential exhibits the shape-invariance property for some 
known extended defects. In these cases, the complete spectrum is h i v e d  by the methods of 
supersymmetric quantum mechanics. 

1. Introduction 

The concept of supersymmetry first appeared in quantum field theory and later was used 
in different areas of physics (cf random systems). The essence of the method is more 
transparently seen in ordinary quantum mechanics as has been known since the work of 
Witten [l]. Supersymmetric quantum mechanics (SSQM) provides a unified framework for 
performing the factorization of the Schrijdinger equation, following the pioneering works 
of Dirac and of Schrodinger (12-51, for a review see [6]). Furthermore, if the potential 
in the Schrodinger equation has the property of shape invariance [7], the eigenvalues and 
the corresponding eigenvectors can be obtained by simple algebraic manipulations and it 
was found that the well known exactly-solved problems (i.e. those problems which can 
be rewritten as hypergeometric equations after a suitable change of variable) exhibit the 
shape-invariance property. 

In the present paper, we show a possible new field of application for SSQM. In statistical 
physics. inhomogeneous systems have been extensively studied in the past decade (for a 
recent review see [PI). An inhomogeneity can be caused basically in two different ways. 
Geometrical effects due to the surface shape of the system and/or modified couplings or 
defects may influence the critical behaviour. The simplest inhomogeneity is the semi-infinite 
system with a free surface. The universal behaviour in a surface layer with a width of the 
order of the correlation length is described by a set of local (surface) critical exponents 
which are different from the bulk ones (see [SI). More generally, the existence of a free 
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surface may induce a coupling enhancement between nearest-neighbour spins in a region 
of some extent close to the boundary and a local modification of the critical behaviour can 
then be expected. One special type of extended defect was introduced by Hilhorst and 
van Leeuwen 191. Here the couplings perpendicular to the surface deviate from the bulk 
one by a power law A/y’, y being the distance from the free surface. It follows from 
a relevance-irrelevance criterion [lo, 111 that this type of perturbation is marginal for the 
two-dimensional king model at o = 1. In this case the critical exponents are A-dependent, 
as obtained from a number of exact calculations [12-181. The conformal properties of 
such systems have been investigated using the plane-to-cylinder conformal mapping, under 
which the system is mapped onto a strip. Provided the perturbation profile is also properly 
transformed, the gap-exponent relation [19] and the tower-like smcture of the spechum 
are preserved [20-22]. This is still the case when the defect extends from a line in the 
bulk [23-271. It was later shown, in a first-order perturbation calculation, that the gap- 
exponent relation is valid for any marginal extended perturbation [28]. On the other hand, 
the geometrical shape of the free boundary may also lead to a modified critical behaviour. 
These effects are relevant in the critical behaviour at comers or parabola shaped systems 
(i.e. such that the boundary curve follows a parabolic law) [29-331. 

In the present paper, we consider the two-dimensional king model with a marginal 
Hilhorst-van Leeuwen defect, as well as a related hyperbolic type of defect in the comer 
geometry, and calculate the corresponding local critical exponents. Using conformal 
methods, the problems are studied in the strip geometry. Here the spectrum of the transfer 
matrix is calculated exactly using the method of supersymmetric quantum mechanics. 

The set-up of the paper is the following. In section 2, we present a short summary 
of SSQM and of the concept of shape-invariance of the potential partners. In section 3, 
we show that in the cylinder geometry, when the Hamiltonian limit is considered, the 
eigenvalue equations in the continuum limit take the form of supersymmetric Schrodinger 
equations. The Hilhorst-van Leeuwen problem is considered and the complete spectrum of 
the transfer matrix is calculated by the method of SSQM. The same calculation is performed 
€or the hyperbolic defect in section 4. In section 5, the critical exponents are calculated and 
a relation between the two problems through conformal invariance is discussed. 
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2. Supersymmetric quantum mechanics 

The work of Witten [l] has focused considerable interest on supersymmetric quantum 
mechanics (for recent reviews see [34,35]). Furthermore, by the concept of shape invariance, 
Gendenshtein [7] has obtained a systematic generalization to Dirac’s operator method for 
the ID harmonic oscillator problem. 

Let us consider the Hamiltonian 

with a vanishing ground-state energy E;. The Bound-state wavefnnction is then related to 
the potential as V-(C) = $;(<)/$&). In terms of the superpotential 
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the Hamiltonian '6- is factorized 

dZ 6- = -- + (W2(<) - W'(C)) = Q+Q- 
dF2 
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(3) 

Here the prime denotes a derivative with respect to < and the charge operators are defined 
by 

The partner Hamiltonian 

may then be introduced and is also factorized, &+ = &&, and there exists a one-to-one 
correspondence between the spectrum of the two partner Hamiltonians as: E;+l = E$. If 
the ground-state wavefunctions of '6+, which are given by (2) as 

are non-normalizable, the ground-state energies of both 2- and '6+ are non-zero and 
E; = E:. In this case supersymmetry is broken. 

In the following we consider unbroken supersymmehy, i.e. E; = 0 and the potential 
partners which satisfy the shape-invariance property as 

V+(C,ao) =V-tC,ai)+R(ai) .  (7) 

Here a0 is a parameter of the Hamiltonian, a1 is some function of (10, and R(a1) is a function 
which does not involve the variable 5 .  It is then easy to show that the spectrum of 7-L and 
'6+ are simply shifted by the amount of R(al) and then, by iterating the shape-invariance 
relation, one builds a hierarchy of Hamiltonians whose spectra are related as mentioned 
above. Finally, one finds the eigenvalues of 7-1- as 

The corresponding wavefunctions are obtained by applying the charge operators on the 
ground-state wavefunction: 

wi-1 ao) - d+(ao)Q+(a1). . . Q + ( a n - l ) w , a n ) ~  (9) 

The shape-inviriant potentials can be found in the literature [36-41]. The factorization 
technique was,'in fact, originally introduced in the context of ordinary differential equations 
by Darboux [42-44], and the application of the so-called commutation formula to the 
Schrodinger equation can already be found in [45]. 
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3. Hilhorst-van Leeuweu model 

Consider a semi-infinite two-dimensional king model with inhomogeneous nearest- 
neighbour couplings 

B Berche and F Igl6i 

w , e )  = K(CO) - g a p ,  e )  (10) 

where K ( w )  is the bulk critical value. The scale covariance requirement for the 
inhomogeneity leads to a power-law behaviour for the radial part of the shape function /28]: 

Z(P. e) = f w p w  (11) 

and the perturbation amplitude g, then scales under renormalization as g' = b."-Og where 
yr is the bulk thermal exponent. Here, we use the method of conformal invariance. The 
deviation from the bulk coupling in the original system f (z) = K ( p ,  0 )  - K (00) transforms, 
under the conformal mapping w = w(z)  = u+iu, according to t ( w )  = I w ' ( z ) p r ( z )  [20]. 
With the usual planeto-cylinder logarithmic conformal mapping w(z) = $ lnz, the semi- 
infinite system is mapped onto an infinitely long strip of width L with free boundary 
conditions, and the inhomogeneity (IO) becomes 

where K ' ( m )  is the critical coupling in the modified geometry. If we furthermore assume a 
marginal inhomogeneity, i.e. such that the perturbation amplitude remains unchanged under 
a rescaling, one has o = y, and it yields a perturbation which is independent of the u- 
direction along the strip: 

II xu 
K ( u )  = K'(0O) - g--f (I) . 

L 

The prototype of smoothly inhomogeneous systems has been introduced by Hilhorst 
and van Leeuwen [9]. Here, as an illustration, we recover the results previously obtained 
by Burkhardt and Igl6i [20] by more complicated methods. Consider a two-dimensional 
semi-infinite king model on a square lattice. The couplings K I  parallel to the surface are 
constant, while the nearest-neighbour couplings Kz(y) perpendicular to the surface assume 
a power-law deviation from their bulk critical value (figure (la)): 

K z ( y )  = K*(m) - - . (14) 

where y measures the distance from the free surface. This corresponds to a marginal 
shape function Z ( p , e )  = (psino)-'. This model has been extensively studied in the two- 
dimensional classical version 19-16] as well as in its quantum counterpart [17,18,20-23] 
(for a review see [SI). Following Burkhardt and Igl6i [20], we transform the inhomogeneity 
by the logarithmic conformal mapping and the inhomogeneity transforms into a sinusoidal 
form on the snip: 

Y 

O C U i L  x g  &(U) = K;(w) - -- 
L sin ( y )  
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X X 5 
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Figure 1. Enhancement of local couplings near an extended defect, (a)  at a free surface 
(Hilhoat-van Leeuwen inhomogeneity). (b)  at a mmer (hyperbolic defen). 

The tlansfer matrix along the strip = e-r*, where r is the lattice spacing, leads, in 
the extreme anisotropic limit [46-48], to a one-dimensional quantum chain defined by the 
Hamiltonian 

with varying couplings 
7 r a  

A ( l )  = 1 - -- 
L sin (?) ' 

Here, the U'S  are the Pauli matrices. The Hamiltonian can be diagonalized by standard 
methods [49,501, transforming in terms of fermion creation ($) and annihilation ( q k )  
operators as 

f i = ~ A k ( $ r l k - ~ ) .  (18) 
R 

Here, the fermionic modes with the lowest energies, which are O(L-'), are obtained in the 
continuum approximation from a pair of Schrodinger equations involving the inhomogeneity 
function x ( f ' )  = or/ s in t  where t = 7refL. The first one in terms of $R reads as 

with the boundaq conditions 

Similarly for the function &: 



: ( 0 )  a=2 . 
4 0  i 

I: x(5) 
2 0  

~~-.___________..__--- . .. 
, , ,  .. . -  

(I n16 xi3 rrlZ 2x13 5n/6 

Figure2 lnhomogeneityfunctionX(<)(----)andsuperpotential W(<)  (-)fortheHilhorst- 
van Leeuwen model (a) for CL = 2 and (b) a = -4. 

II 

In these expressions, @(<) and @(<) are the continuum limit approximations of the 
eigenvectors entering the discrete eigenvalue equations that one obtains when diagonalizing 
the Hamiltonian (16) (see [49]). 

The similarity between these equations and the Schrodinger equations encountered in 
supersymmetric quantum mechanics has already been mentioned by Choi [51], but here 
we show how the concept of shape invariance may be used to determine the excitation 
spectrum. 

First, we note that all the eigenvalues of ( 1 9 ~ )  and (20a) are the same, including the 
smallest one (AoL/n)’. thus, in the language of SSQM, supersymmetry is broken [52,53]. 
This statement is in agreement with Witten’s argument 111, according to which unbroken 
supersymmetry requires a superpotential w-ith one node (or an odd number of nodes). This 
is obviously not the case for ,yo) (see figure 2). which is symmetrical to n/2, since 
the inhomogeneity in the semi-infinite plane is translationally invariant along the surface. 
We then have to face the problem of finding a superpotential W(5) in order to restore 
supersymmetry. This superpotential must be related to the inhomogeneity function x ( < )  
by a Riccati equation, i.e. such that W z  - W’ and x 2  - x’ are identical up to a constant, 
the constant being of essential importance because its existence ensures that supersymmetry 
will be restored. 

The boundary conditions in (19b) and (20b) generally pose the same requirement as 
in SSQM, i.e. the wavefunction must vanish at both ends of the interval since the potential 
term diverges there. However, if ?,V diverges faster than I) when C -? n, then the solution 
of (19a) is non-normalizable. This type of solution, which describes a localized mode, is 
associated with the appearence of spontaneous surface order in the system and corresponds 
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to a vanishing excitation A0 = 0. For the Hilhorst-van Leeuwen inhomogeneity, such a 
solution is given by 

$I&) - e x p ( - j x ( l ) d c )  =tan-= (i) (21) 

which is indeed non-normalizable for 01 e -4. The lowest excitation energy in this region 
is then Ao = 0. We shall return later to determine the higher-lying levels of the spectrum 
in this case. 

In the following, we deal with the region ff 2 -;, where the method of SSQM works 
without limitations and shape invariance is a worthwhile concept for deducing the eigenvalue 
spectrum. First, we should find a convenient superpotential which solves the Riccati 
equation. This is done with the mapping introduced by Dutt eta1 [54]. The inhomogeneity 
function x ( < )  is a special case of the Scarf superpotential S(<) = al,/sin< - cuzcot<, 
which leads to the Eckart potential by $(<) - S ’ ( 0  [55]. With the choice (YI = -4 and 
(YZ =a! + $, this defines a new superpotential 

1 
2sinC~ 

W,(() = -- - (014- $)cot<.  

It is also easy to see that the superpotential W,(<) presents one node (figure Z), thus Witten’s 
requirement on unbroken supersymmetry is satisfied and supersymmetry is now unbroken 
in the range cx > -4. This choice leads to the trigonomefxic Eckart potentia1 for V-(<): 

a2 f (Y cos < 
sin2 < 

2 - (ff + 4) V-(O = 

and the ground-state excitation A0 can thus be identified as 

2 (%) =(a+?) 1 2  

Now equation (19a) can be written as 

(241 

and the ground-state wavefunction, obtained through (6) is given by 

(26) 
$;(<)-exp(-jW,(<)d<) - . z s i n a + ’ <  1 .  ( I + c ~ s < ) - ” ~ .  

The solution (26), which is indeed normalizable for 01 2 -4, continuously evolves towards 
the localized mode (21) when U + a, = -; from above. The higher-lying levels of the 
Schrodinger equation, which are given as 
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W,2tC)-W,'tU ............................... ::m 

0 

a=-4 
- 1 0  - 1 0  

0 x16 n/3 6 2  2x13 5x16 n 0 x16 6 3  1 2  2x13 5 6 6  IL 

5 5 

Figure3. L i s )  potential (-)and allowed e'wnenergy levels E; (----), (a) for OL = 2 and 
(b) OL = -4. 

are obtained from the shape-invariance property of the partner potentials: 

v+(5.ao)=V-'-(t.al)+(al + S ) 2 - ( a , + f ) 2  (28) 

where a0 = a, a1 = UO+ 1. Then, according to (7) and (S), the energies of the single-fermion 
excitations follow from the remainder function R(al) = (a1 + 4)' - (a, + $2: 

(29) 

In the regime of surface order, a < -4, the eigenfunctions of.the excited states of (1%) 

H 
a 2 -1 Ax = -(a L + k  + 4) k = 0 , 1 , 2 . .  . 2 '  

are normalizable, the previous method thus applies. Now, the supetpotential is given by 

1 
2smt W<(t) = - + (a - 4) cot 

and the energy of the first non-vanishing excitation is identified as 

The higher-lying excitations can be simiIarly obtained from the shape-invariance property, 
so that the energies of the fermion modes are now given as 

7l 
A o = O  A a = - ( k - ~ ~ - i )  k = l , 2 , 3  ... a<-$. (32) L 

The potential V-(<) and the corresponding eigenenergies E; are shown in figure 3 in 
the ordered phase (a -z ac) and in the non-ordered phase (a >~ac). Figure 4 shows the two 
first eigenfunctions in the two re,' mimes. 
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Figure 4. Ground state and fira excited wavefunctions for the Hilhont-van Leeuwen model 
(a)  for II = 2 and ( b )  II = -4. 

4. Hyperbolic defect 

The inhomogeneity in the Hilhorst-van Leeuwen model, studied before, can be considered 
as a result of elastic deformations on the free surface of the system. If the system now has 
the shape of a comer with a right angle, then uniform elastic deformations would result 
in a defect of hyperbolic form. The local couplings are~constant along the hyperbolas 
f ( x ,  y )  = I =constant, whereas the couplings pointing perpendicular to the f ( x ,  y )  lines 
are assume2to vary as (figure (lb)) 

(33) 
P 

X Y  
KL(4 Y )  = KL(C0) - g - .  

Thus, near to the surface but far from the corner, the inhomogeneity has the same shape 
+s in the Hilhorst-van Leeuwen model in (10). The shape function corresponding to this 
defect is 

Once again, the inhomogeneity is mapped onto a strip geometry, now the appropriate 
conformal transformation is the % In z logarithmic mapping. In the strip geometry, the 
inhomogeneity is again a sinusoidal form, the couplings in the Hamiltonian operator (16) 
V a r y  as 

R (Y R C Y  
h(t)  = 1 - - = 1 - -  

sin (7) 
from which we deduce the inhomogeneity function in the continuum limit: 

ff 2ar =- 
'('I = cos 5 sin sin 25 

(35) 
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where < is defined in the range 0 < < < n/2 .  This inhomogeneity function leads to the 
PSschl-Teller potential, but here, from the previous section we can immediately get the 
energies of the single-particle excitations: 

5. Local critical properties 

Conformal invariance makes it possible to transform critical systems from one restricted 
geometry into another, and deduce the local critical exponents in the former geometry from 
the energy gaps in the transfomed one. 

In a semi-infinite system, like the Hilhorst-van Leeuwen model, the algebraic decay of 
the correlation function at the critical point between one point close to the surface (zl - 1) 
and another point far in the bulk (zz - z) is given asymptotically as lzl-("+*f), where xf is 
the surface anomalous dimension of the operator w ,  while x is the corresponding exponent 
for the homogeneous bulk. Under the logarithmic conformal mapping w(z) = 5 Inz = 
U + iv, the correlation function transforms according to the usual position-dependent law 
involving only the bulk scaling dimensions: 

(!-@I )PL(WZ)) = IW'(Z1) I- I w'(zz) 1- (&I )w(zz)) (38) 

and the correlations in the cylinder geometry exhibit an exponential decay along the strip 
which defines the correlation length 6 on the strip. In the extreme anisotropic limit, 115 is 
given by the energy gap [47], so that the surface anomalous dimensions are contained in 
the spectrum of the Hamiltonian operator in (16): 

(39) 
L 

x: = p f i  -Eo) 

as L + W. Then, using the diagonal form of '& in (18). the surface critical exponents 
of the Hilhorst-van Leeuwen model can be obtained as combinations of the Ax fermion 
energies. For example the critical exponents of the surface magnetization and surface energy 
correlations are given by 

in agreement with [20]. Here, xr = 0 is due to surface ordering. 
For the hyperbolic defect, one defines the comer exponents, denoted xf, and associated 

to the algebraic decay of correlations in the comer geometry. In the strip geometry, the 
xp's are again proportional to the corresponding gaps of the Hamiltonian operator such as 



SSQM in inhomogeneous king models . 3589 

Then, the comer exponents for the magnetization and the energy for the hyperbolic defect 
with a right angle 0 = n/2 are given as 

, .  

x,m=201+1 x:=4lY+4 012-4 (424 
x, m = 0 x:=1-2a a<-;. (42b) 

Comparing these results to those of the Hilhorst-van Leeuwen model, one can notice 
that the comer exponents are, in each case, the double of the corresponding surface ones. 
The same relation is known between exponents at a free surface and those of a comer of 
a right angle'without the presence of an inhomogeneity, which is, according to Cardy [33], 
a consequence of conformal invariance. The Schwan mapping i. = zQlZ with 0 = n/2 
connects the two geometfies and leads to the above relation between the local exponents. It 
is not difficult to see that the same Schwarz mapping transforms the Hilhorst-van Leeuwen 
inhomogeneity and the hyperbolic defect into each other, and thus gives the explanation for 
the observed relation between the corresponding local scaling dimensions. This last result 
can be used in the opposite direction, then the close relation between the spectrum of the 
Eckart and that of the Poschl-Teller potentials can be attributed to conformal symmetry. 

Finally we note that the relation between SSQM and inhomogeneous king models cannot 
be exploited further. Inspecting the table of shape-invariant superpotentials [36-41], no 
further one is known at present which could serve as a basis for a new physically relevant 
inhomogeneity with an exact solution on the two-dimensional king model. 
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