IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Realization of supersymmetric quantum mechanics in inhomogeneous Ising models

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1995 J. Phys. A: Math. Gen. 28 3579
(http://iopscience.iop.org/0305-4470/28/13/005)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 23:39

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/28/13
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math, Gen. 28 (1995) 3579-3590. Printed in the UK

‘Realization of supersymmetric quantum mechanics in
inhomogeneous Ising models

Bertrand Berche and Ferenc Igldit

Laborateire de Physigue du Solide}, Université Henri Poincaré, Nancy I, BP 239, F-54506
Vandeuvre 18s Nancy Cedex, France i

Received 26 January 1993

Abstract. Supersymmetric guantum mechanics is well known to provide, together with the
so-called shape-invariance condition, an elegant method of solving the eigenvalue problem of
some one-dimensional potentials by simple algebraic manipulations. In the present paper, this
method is used in statistical physics. We consider the }ocal critical behaviour of inhomogeneons
Ising models and determine the complete set of anomalous dimensions from the spectrum of
the coresponding transfer matrix in the strip geometry. For smoothly varying perturbations,
the eigenvalue problem of the transfer matrix takes the form of a Schrddinger equation,
and, furthermore, the corresponding potential exhibits the shape-invariance property for some
known extended defects. In these cases, the complete spectrum is derived by the methods of
supersymunetric quantum mechanics.

1. Introduction

The concept of supersymmetry first appeared in quantum field theory and later was used
in different areas of physics (cf random systems). The essence of the method is more
transparently scen in ordinary quantum mechanics as has been known since the work of
Witten [1]. Supersymmetric quantum mechanics (SSQM) provides a unified framework for
performing the factorization of the Schrédinger equation, following the pioneering works
of Dirac and of Schrddinger ([2-5], for a review see [6]). Furthermore, if the potential
in the Schrédinger equation has the property of shape invariance [7], the eigenvalues and
the corresponding eigenvectors can be obtained by simple algebraic manipulations and it
was found that the well known exactly-solved problems (i.e. those problems which can
be rewritten as hypergeometric equations after a suitable change of variable) exhibit the
shape-invariance property.

In the present paper, we show a possible new field of application for 5SQM. In statistical
physics, inhomogeneous systems have been extensively studied in the past decade (for a
recent review see [8]). An inhomogeneity can be caused basicafly in two different ways.
Geometrical effects due to the surface shape of the system and/or modified couplings or
defects may influence the critical behaviour. The simplest inhomogeneity is the semi-infinite
system with a free surface. The universal behaviour in a surface layer with a width of the
order of the correlation length is described by a set of local (swrface) critical exponents
which are different from the bulk ones (see [8]). More generally, the existence of a free
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surface may induce a coupling enhancement between nearest-neighbour spins in a region
of some extent close to the boundary and a local modification of the critical behaviour can
then be expected. One special type of extended defect was introduced by Hilhorst and
van Leeuwen [9]. Here the couplings perpendicular to the surface deviate from the bulk
cne by a power law A/y“, y being the distance from the free surface. It follows from
a relevance—irrelevance criterion [10, 11] that this type of perturbation is marginal for the
two-dimensional Ising model at w = 1. In this case the critical exponents are A-dependent,
as obtained from a number of exact calculations [12-18]. The conformal properties of
such systems have been investigated using the plane-to-cylinder conformal mapping, under
which the system is mapped onto a strip. Provided the perturbation profile is also properly
transformed, the gap-exponent relation [19] and the tower-like structure of the spectrum
are preserved [20-22]. This is still the case when the defect extends from a line in the
bulk [23-27]. It was later shown, in a first-order perturbation calculation, that the gap-
exponent relation is valid for any marginal extended perturbation [28). On the other hand,
the geometrical shape of the free boundary may also lead to a modified critical behaviour.
These effects are relevant in the critical behaviour at corners or parabola shaped systems
(i.e. such that the boundary curve follows a parabolic law) [29~33].

In the present paper, we consider the two-dimensional Ising model with a marginal
Hilhorst—van Leeuwen defect, as well as a related hyperbolic type of defect in the corner
geometry, and calculate the corresponding local critical exponents. Using conformal
methods, the problems are studied in the strip geometry. Here the spectrum of the transfer
matrix is calculated exactly using the method of supersymmetric quantum mechanics.

The set-up of the paper is the following. In section 2, we present a short summary
of 83QM and of the concept of shape-invariance of the potential partners. In section 3,
we show that in the cylinder geometry, when the Hamiitonian limit is considered, the
eigenvalue equations in the continuum Iimit take the form of supersymmetric Schrédinger
equations. The Hilhorst—van Leeuwen problem is considered and the complete spectrum of
the transfer matrix is calculated by the method of 8sQM. The same calculation is performed
for the hyperbolic defect in section 4. In section 5, the critical exponents are calculated and
a relation between the two problems through conformal invariance is discussed.

2. Supersymmetric quantum mechanics

The work of Witten [1] has focused considerable interest on supersymmetric quantum
mechanics (for recent reviews see [34, 35]). Furthermore, by the concept of shape invariance,
Gendenshiein [7] has obtained a systematic generalization {o Dirac’s operator method for
the 1D harmonic oscillater problem.

Let us consider the Hamiltonian

- a2
H- =—d-—€3+1/’_(§') 1)

with a vanishing ground-state energy E;. The ground-state wavefunction is then related to
the potential as V_(£) = ¥{(£)/¥o(Z). In terms of the superpotential

i

W) = -% In () @
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the Hamiltonian H... is factorized:

~ d? P
H-= ~a? + (W) -W @) =070 3

Here the prime denotes a derivative with respect to { and the charge operators are defined
by

a4 5o _ d
o i +WI() o i +WI(©). &)

The partner Hamiltonian

2

N d
Hy = s + +(¢> =—— + (W2 + W) 5

may then be introduced and is also factorized, ’H_,_ o Q and there exists a one-to-one
correspondence between the spectrum of the two partner Hamiltonians as: ET, = EY. If
the ground-state wavefunctions of H., which are given by (2) as

20y = exp [i f wo:)d;] ©

are non-normalizable, the ground-state energies of both H_ and 7, are non-zero and
E; = E}. In this case supersymmetry is broken.

In the following we consider unbroken supersymmetry, i.e. £; = € and the potential
partners which satisfy the shape-invariance property as

Vilf,a0) = VoL, a1) + Ra) - M

- Here aq is a parameter of the Hamiltonian, &, is some function of ap, and R(«,) is a function
which does not involve the variable £. It is then easy to show that the spectrum of H_ and
H . are simply shifted by the amount of R(a;) and then, by iterating the shape-invariance
relation, one builds 2 hierarchy of Hamiltonians whose spectra are related as mentioned
above. Finally, one finds the eigenvalues of 7. as

E (@)=  Ra). ®
k=1

The corresponding wavefunctions are obtained by applying the charge operators on the
ground-state wavefunction:

Yal, a0) ~ 01 (a0} OF (@) ... OF (@) Wo(Z, @) - ©)

The shape-invariant potestials can be found in the literature [36-41). The factorization
technique was, in fact, originally introduced in the context of ordinary differential equations
by Darboux {42-44], and the application of the so-called commutation formula to the
Schridinger equation can already be found in [45].
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3. Hilkorst-van Leeuwen model

Consider a semi-infinite two-dimensional Ising model with inhomogeneous nearest-
neighbour couplings

K(p,0) = K(c0) - gZ(p,6) (10)

where K(o0) is the bulk critical value. The scale covariance requirement for the
inhomogeneity leads to a power-law behaviour for the radial part of the shape function [28]:

Z(p,0) = F (Y P® (1)

and the perturbation amplitude g, then scales under renormalization as g" = 5% g where
y; is the bulk thermal exponent. Here, we use the method of conformal invariance. The
deviation from the bulk coupling in the original system t{z) = K{p, 8)— K (00) transforms,
under the conformal mapping w = w(z)} = 1 - iv, according to t(w) = [w'(z)|" Mt (z) [20].
With the usual plane-to-cylinder logarithmic conformal mapping w(z) = fin Z, the semi-
infinite system is mapped onto an infinitely long strip of width L with free boundary
conditions, and the inhomogeneity (10} becomes

- =5 (5) e it ] 1 (5
K(w,v) = K'(e) - g (3) e[ -] 7 (T) (12)
where K'(00) is the critical coupling in the modified geometry, I we furthermore assume a
marginal inhomogeneity, i.e. such that the perturbation amplitude remains unchanged under
a rescaling, one has @ = y; and it yields a perturbation which is independent of the u-
direction along the strip:

KW =K'@)-s7f (%) (13)

The prototype of smoothly inhomogeneous systems has been introduced by Hilhorst
and van Lesuwen [9]. Here, as an illusiration, we recover the results previously obtained
by Burkhardt and Igldi [20] by more complicated methods. Consider a two-dimensional
semi-infinite Ising model on a square lattice. The couplings K parallel to the surface are
constant, while the nearest-neighbour couplings X>(y) perpendicular to the surface assume
a power-law deviation from their bulk critical value (figure (1a)):

K2(y) = Ka(o0) — f : (14)

where y measures the distance from the free surface. This corresponds to a marginal
shape function Z(p,8) = (0 sin#)~!. This model has been extensively studied in the two-
dimensionai classical version [9-16] as well as in its quantum counterpart [17, 18,20-23]
{for a review see [8]). Following Burkhardt and Igléi [20], we transform the inhomogeneity
by the logarithmic conformal mapping and the inhomogeneity transforms into a sinusoidal
form on the strip:

K2(v) = Kj(o0) — = —

_— 0 <L.
L 5in (2) <U=< (15)
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Figure 1. Enhancement of local couplings near an extended defect, (@) at a free surface
(Hilhorst-van Leenwen inhomogeneity), (b) at a comer (hyperbolic defect).

The transfer matrix along the strip 7 = e"ﬁ, where v is the lattice spacing, leads, in
the extreme anisotropic limit [46—48], to a one-dimensional quantum chain defined by the

Hamiltonian

L L=1
H==1) 0ul®—1) 2o+ D {6y
) =<1 =1
with varying couplings
A =1-2—2 - ' - an

L sin (m!)

Here, the o's are the Pauli matrices. The Hamiltonian 7 can be dlagonahzed by standard
methods [49,50], transforming in terms of fermion creation (1) and annihilation ()

operators as

=) Axlnim—13) | (18)
a /

Here, the fermionic modes with the lowest energies, which arg O(L™!), are obtained in the
continuum approximation from a pair of Schrédinger equations involving the inhomogeneity
function x (¢} = a/sin¢ where ¢ = w£/L. The first one in terms of ¥ reads as

JWAL: .
dé'z £+ () — X @) ) = (—;—) Ve@) Ot <aw (19a)
with the boundary conditions |
' Y (l)
=0 =— . 194
k(D=0 9 | x(m) (198}

Similarly for the function ¢y ;

d ALN\?
¢* ==+ (XA + X)) ell) = (—J—j—) Hf) O0<i<w. (20a)
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Figure 2, Inhomogeneity function x (¢) (- - -} and superpotential W{{) (—) for the Hjlhorst—
van Lesuwen model (@) fora =2 and () ¢ = —4.

¢ ()
(8} ;=0

=+x(0) Gl = 0. (205)

In these expressions, W({t)} and ¢(¢) are the continuum limit approximations of the
eigenvectors entering the discrete eigenvalue equations that one obtains when diagonalizing
the Hamiltonian (16) (see [49]).

The similarity between these equations and the Schridinger equations encountered in
supersymmetric quantum mechanics has already been mentioned by Choi [51}, but here
we show how the concept of shape invariance may be used to determine the excitation
spectrum.

First, we note that all the eigenvalues of (194) and (20a) are the same, including the
smallest one (AgL/m)?, thus, in the language of SSQM, supersymmetry is broken [52,53].
This statement is in agreement with Witten’s argument [1], according to which unbroken
supersymmetry requires a superpotential with one node (or an odd number of nodes). This
is obviously not the case for x(¢) (see figure 2), which is symmetrical to = /2, since
the inhomogeneity in the semi-infinite plane is transiationally invariant along the surface.
We then have to face the problem of finding a superpotential W(¢) in order to restore
supersyminetry. This superpotential must be related to the inhomogeneity function x({)
by a Riccati equation, i.e. such that W?* — W and x? — x’ are identical up to a constant,
the constant being of essential importance because its existence ensures that supersymmetcy
will be restored.

The boundary conditions in (195) and (206) generally pose the same requirement as
in $SQM, ie. the wavefunction must vanish at both ends of the intervai since the potential
term diverges there. However, if ¥’ diverges faster than ¥ when ¢ — =, then the solution

- of (19a) is non-normalizable. This type of solution, which describes a localized mode, is
associated with the appearence of spontaneous surface order in the system and corresponds
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to a vanishing excitation Ag = 0. For the Hilhorst—van Leeuwen inhomogenetty, such a
solution is given by

VioolZ) ~ oxp (— f x{t)dc) = tan™ (g) @1

which is indeed non-normalizable for o < —5 The lowest excitation energy in this region
is then Ap = 0. We shall return later to determine the hxgher-lymg levels of the spectrum
in this case. _

In the following, we deal with the region o > w%, where the method of SsQM works
without limitations and shape invariance is a worthwhile concept for deducing the eigenvalue
spectrum. First, we should find a convenient superpotential which solves the Riccati
equation. This is done with the mapping introduced by Dutt ef af [54]. The inhomogeneity
function x({) is a special case of the Scarf superpotential S({) = oy /sin{ — azcot,
which leads to the Eckart potential by S2(¢) — §'(¢) [55]. With the choice o = "']i and
ax =a+ %, this defines a new superpotential

1
Wall) = T (o + ) cot. : (22)

It is also easy to see that the superpotential W.. () presents one node (figure 2), thus Witten’s
requirement on unbroken supersymmetry is satisfied and supersymmetry is now unbroken
in the range « 2 —%. This choice leads to the trigonometric Eckart potential for V_(¢):

o? +ocost
V)= e 1y (23)
and the ground-state excitation Ag can thus be identified as
AgL\? 142
—_ = (a +4- 5) . (24)
T
Now equation (19g) can be written as
a2 AxL AoL
d;f + (W2 =~ W) = [(—7’;—) ( ; ) ]mm (25)

and the ground-state wavefunction, obtained through (6) is given by
1
95 &) ~ exp (— f W () d,;) ~ gt (o)L 26)

The solution (26), which is indeed normalizable for « > —%, continuously evolves towards
the localized mode (21) when ¢ — o, = —% from above. The higher-lying levels of the
Schrddinger equation, which are given as

R .
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Figure 3. V_({) potential (——) and allowed eigenenergy levels E; (----), (@) fora =2 and
() a=-—4.

are obtained from the shape-invariance property of the partner potentials:

Vel a0) = V_(¢ 1) + (a1 + )7 = (a0 + 1)? (28)

where qy = @, a; = dp~+ 1. Then, according to (7) and (8), the energies of the single-fermion
excitations follow from the remainder function R{a;) = (a; + %)2 —{ag + %)2:

=Ze+k+y) k=012  a>-. 29)

In the regime of surface order, o < ~—- , the eigenfunctions of the excited states of (19a)
are normalizable, the previous method thus applies, Now, the superpotential is given by

W)=

251n : + (e — 3) ot ‘(30)

and the energy of the first non-vanishing excitation is identified as

(A;L) ( ) 31)

The higher-lying excitations can be similarly obtained from the shape-invariance property,
so that the energies of the fermion modes are now given as

Ao=0 AksL( —a—1) k=1,23... ag -5, (32)
The potential V-({} and the corresponding eigenenergies £, are shown in figure 3 in

the ordered phase (& < o) and in the non-ordered phase (x >.«.). Figure 4 shows the two
first eigenfunctions in the two regimes.
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Figure 4. Ground state and first excited wavefunctions for the Hilhorst-van Leeuwen model
(@) fora=2and (b)) o =—4. -

4. Hyperbolic defect

The inhomogeneity in the Hilhorst—van Leeuwen model, studied before, can be considered
as a result of elastic deformations on the free surface of the system, If the system now has
the shape of a corner with a right angle, then uniform elastic deformations would result
in a defect of hyperbolic form. The local couplings are constant along the hyperbolas
f.y)y= xi = constant, whereas the couplings pointing perpendicular to the f(x, y) lines

are .':1ssun'n3clJ to vary as (figure (15))
Ki(r,3) = Ki(oo) — g (33)
Xy

Thus, near to the surface but far from the corner, the inhomogeneity has the same shape
as in the Hilhorst—van Leeuwen model in (10). The shape function corresponding to this
defect is :

Z(p,8) = (34)

pcosdsing
COnce again, the inhomogeneity is mapped onto a strip geometry, now the appropriate
conformal transformation is the %félnz logarithmic mapping. In the sirip geometry, the
inhomogeneity is again a sinusoidal form, the couplings in the Hamiltonian operator (16)
vary as :
o 4 o

T
O ()T Fa (D) =
2L 2L L
from which we deduce the inhomogeneity function in the contimuum limit:
o 2o
x@) = (36)

cosf sin{ ~ sin 2
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where ¢ is defined in the range 0 € { € x/2. This inhomogeneity function leads to the
Péischl-Teller potential, but here, from the previous section we can immediately get the
energies of the single-particie excitations:

Ak=%(2oz+2k+1) k=0,1,2... a>- (37a)

]

Ag =0 Ak=§£(2k—1—2cz) k=1,23... .a<-1. (37b)

DI

5. Local critical properties

Conformal invariance makes it possible to transform critical systems from one restricted
geometry into another, and deduce the local critical exponents in the former geometry from
the energy gaps in the transformed one.

In a semi-infinite system, like the Hilhorst—van Leeuwen model, the algebraic decay of
the correlation function at the critical point between one point close to the surface (z; ~ 1)
and another point far in the bulk (z; ~ z) is given asymptotically as |z|~®*+*), where x* is
the surface anomalous dimension of the operator g, while x is the corresponding exponent
for the homogeneous bulk. Under the logarithmic conformal mapping w(z) = %lnz =
i + iv, the correlation function transforms according to the uwsual position-dependent law
involving only the bulk scaling dimensions:

{pw)p(w)} = [w'(z)| ™ w' @)™ (pleuz2) (38)

and the correlations in the cylinder geometry exhibit an exponential decay along the strip
which defines the correlation length £ on the strip. In the extreme anisotropic limit, 1/£ is
given by the energy gap [47], so that the surface anomalous dimensions are contained in
the spectrum of the Hamiltonian operator in (16):

L

xf = —(Ey — Eo) , _ (39)

as L — oco. Then, using the diagonal form of H in (18), the surface critical exponents
of the Hilhorst—van Leeuwen model can be obtained as combinations of the A; fermion
energies. For example the critical exponents of the surface magnetization and surface energy
correlations are given by

(40a)
(40b)

n v

o
24

D= A

in agreement with {20]. Here, x}" = 0 is due to surface ordering.

For the hyperbolic defect, one defines the corner exponents, denoted x!', and associated
to the algebraic decay of correlations in the comer geometry. In the strip geometry, the
x&s are again proportional to the corresponding gaps of the Hamiltonian operator such as

L
xf = 6(E“ ~ Eg). . (41)
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Then, the corner exponents for the magnetization and the energy for the hyperbolic defect
with a right angle © = 7 /2 are given as

- {42a)

xr=20+1 xg=4u+4 oz —
o< - © (42b)

m
[

[STC ] E

= xX=1-2a

Comparing these results to those of the Hilhorst—van Leeuwen model, one can notice
that the corner exponents are, in each case, the double of the corresponding surface ones.
The same relation is known between exponents at a free surface and those of a corner of
a right angle without the presence of an inhomogeneity, which is, according to Cardy [33],
a consequence of conformal invariance. The Schwarz mapping 7 = z&7 with @ = /2
connects the two geometries and leads to the above relation between the local exponents. It
is not difficult to see that the same Schwarz mapping transforms the Hilhorst—van Leeuwen
inhomogeneity and the hyperbolic defect into each other, and thus gives the explanation for
the observed relation between the corresponding local scaling dimensions. This last result
can be used in the opposite direction, then the close relation between the spectrum of the
Eckart and that of the Poschl-Teller potentials can be atiibuted to conformal symmetry.

Finally we note that the relation between SSQM and inhomogeneous Ising models cannot
be exploited further. Inspecting the table of shape-invariant superpotentials [36-41], no
further one is known at present which could serve as a basis for a new physically relevant
inhomogeneity with an exact solution on the two-dimensional Ising model.
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